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OF A 0 - P I N C H  BY A H I G H - F R E Q U E N C Y  L O N G I T U D I N A L  

C U R R E N T  
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Equilibrium conditions are  given for a thin annular 0 -pinch with high fi in a magnetic field, 
t r ansverse  to the plane of the r ing,  exciting a high-frequency longitudinal cur ren t  in the 
p lasma.  The pa ramet r i c  buildup of small  co rksc rew perturbat ions is studied on the basis  
of the model of a flexible s t ra ight  p lasma filament~ Conditions under which paramet r i c  
excitation may be suppressed  are discussed.  There is a brief  discussion of forced osci l -  
lations of the radii  of the annular 0-p inch  caused by the alternating fields. 

When a r ight c i r cu la r  0-pinch twists into a torus,  a radial repulsive force a r i ses  (see, e.g. ,  [1]) which 
prevents  the formation of a c losed equil ibrium configuration. An interest ing possibil i ty of balancing this 
force and thus achieving an equil ibrium toroidal 0-pinch a r i ses  when a longitudinal high-frequency cur ren t  
is excited in the plasma and interacts  with the external high-frequency magnetic field t r ansver se  to the 
plane of the r ing.  If the intrinsic p ressure  of the magnetic field produced by the longitudinal cur rent  is 
much sma l l e r  than the plasma p ressure ,  such a discharge may remain  of the 0-pinch type. The use of an 
alternating ra ther  than a d i rec t  longitudinal cur ren t  has the advantage that it significantly relaxes the limi- 
tations imposed on the longitudinal cur ren t  by the condition for stability of the plasma filament with respec t  
to long-wavelength corkscrew perturbations [2,3]. At the same time, a high-frequency longitudinal cur rent  
may lead to the pa ramet r i c  excitation of a co rksc rew instability of the filament at  shor te r  wavelengths [3], 
and it may lead to forced osci l lat ions of the radii  of the annular filament. 

1o We consider  a thin annular f i lament with small  radius a and large radius R (a << R) formed by an 
ideally conducting compress ib le  p lasma.  A direct  azimuthal cur ren t  flowing along the surface of the 
fi lament governs  the jump in the constant  longitudinal magnetic field at the p l a s m a - v a c u u m  interface; 
there is also a high-frequency longitudinal cu r ren t  

I = I o cos o)t (1.1) 

induced by an external high-frequency magnetic field t ransverse  to the plane of the r ing.  

The conditions for equil ibrium of the ring along its small  and large radii  are [4] 

8rip 4- Bi ~ = Be 2 q <Ba 25 (1.2) 

8rip + B J  -~- (1 ~- 2) (B~ 25 = B~ ~ + 4 (R/a) < BRBa) (1.3) 

where p is the gas p r e s su re ,  B e and B i are  the longitudinal magnetic fields outside and inside the filament,  
B a = B a cos at -- 2I/ca is the azimuthal magnetic field of cur ren t  I at the fi lament surface,  B R = BR0 eos 
cot is the high-frequency magnetic field at the c i rc le  of radius R t ransverse  to the ring, / = 21n(8R/a ) - 4 
is the ring inductance per  unit length for cu r ren t  I, and the angle braekets  denote a time averaging.  Strictly 
speaking, Eqs.  (1.2) and (1.3) ref lect  the fact that oscil lations of the small  and large ring radii  due to the 
al ternating fields occur about the values a and R, respect ively .  
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We restrict the discussion to the case in which this corkscrew 

z discharge is of the 0-pinch type with a nearly unit value of fl - 8 ~ e  2 
and we assume t h a t $ ~  ~ S n p ~ B ~  2, (B~ 2) ~ If, moreover ,  Be 2 ~ l ( B ~  2} 
condition (1.3) for equil ibrium of the ring along its large radius s impli-  
fies considerably,  becoming 

hahR : a / R  (1o4) 

where h a = Ba0/Be, hlR = BR0/Be. It follows f rom Eq. (1.4) that equili-  
br ium of a thin ring ( a / R  ~ 1/100) canbe achieved with h R << h a << 1. 

In principle,  equilibrium confinement of a toroida[ 0-pinch can 
also be acheived through the interaction of an alternating longitudinal 

0 cur ren t  with the conducting sheath around the filament.  However, the 
f 

efficieney is low in this case ,  since the rat io of the fi lament radius a to 
Fig. 1 the sheath radius b for 0-pinch discharges  is usually very small :  a / b  "~ 

1/5. 

2. In studying the stabili ty of a p lasma fi lament with respec t  to co rksc rew per turbat ions ,  we will 
for simplici ty neglect the toroidal nature of the problem and consider  the effect of a t ransverse  magnetic 
field. In a study of the stability of a thin cylindrical  p lasma conductor car ry ing  a cur ren t  with respec t  to 
co rksc rew perturbat ions,  for which the displacement of the conductor axis is 

~ ~i exp (ikz ~ iO) (2.1) 

it is convenient to use the model of a flexible filament, calculating the forces  exerted by the magnetic 
field on the per turbed conductor and then direct ly  studying the equation of motion of an a r b i t r a r y  element  
of length of the conductor .  This approach is par t icu lar ly  effective in studying the stability of a f i lament 
with a high-frequency alternating current ,  since it can be used to study pa ramet r i c  excitation of cork-  
screw perturbat ions of the filament.  By way of contras t ,  the method used in [2], involving an averaging 
over high-frequency oscil lat ions of the p ressu re -ba lance  equation for the surface of the per turbed con- 
ductor - an approach which then yields a dispersion relation - cannot be used for a study of pa ramet r i c  
excitation. 

The applicability conditions for the equation of motion obtained by this method were r igorous ly  de- 
r ived in [4, 5] for the general  case of quasis teady-s ta te  high-frequency magnetic fields for a compress ib le  
and ideally conducting p lasma fi lament undergoing smooth (k~ << 1), overdeveloped (~ >> a), and,as a con- 
sequence, long-wavelength (ka << 1)perturbations: ka << k~ << 1. If it is assumed that for the applicability 
of this method, as in the case of static fields [6], it is sufficient that only the smoothness condition (k~ << 
1) be satisfied, short-wavelength perturbat ions (ka ~ 1) may also be studied in this manner ,  but only if 
they are underdeveloped (~ << a), since inequalities k~ << I e ka must hold. It should be kept in mind, how- 
ever ,  that the magnetohydrodynamic description of a plasma is not valid for short-wavelength per turbat ions 
in many cases  of pract ical  in teres t .  

For  the problem as outlined, we introduce an equation for small  co rksc rew oscillations of a p lasma 
fi lament ca r ry ing  longitudinal cur ren t  (1.1). When there is a perturbat ion of the form (2.1), the cyl indrical  
p lasma filament is acted upon by a force per  unit length [7] 

F = 1/~ [Ba2 _ _  a e  (ka) ( kaB  e • Ba) ~ - -  a~ (ka) (ka)2B~ ~] ~l (2.2) 

Here 

~ze (x) = - -K1 (x) / xK~' (x), % (x) = I i  (x) / xI~' (x) 

where K 1 ()() and I~ (X) are modified Bessel  functions, and the pr ime denotes differentiation with respec t  to 
the argument .  

The equation of motion of an element  of the filament length, 

~a2p~i ~ F (2.3) 

where p is the equil ibrium plasma density, is an equation with periodic coefficients because of the time 
dependence adopted for the cur ren t  I in (1.1). Using the rep lacement  wt= 2 T, we can write Eq. (2.3) in the 
s tandard form of a Hill equation [8] with the three t e rms  

d2~l / d~ 2 + (00 + 201 cos 2~ + 20z cos 4~) ~i = 0 (2.4) 

�9 / 
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where  

00 = 4 (~% / 0))~ [(ka)~ (~e + ~h~) + 1 h (~. - i) hJ] 

01 = =  +_4(0)A/0))~kcta~h,~ , 0~ = (0)a] 0))~ (a~ __ ~)h2 

0) 4 = B e ~/ (4g 9)V~a, h i = B~ ] B e 

In the l imit lng case  o) -+ ~ , in which the p l a s m a  f i lament ,  having a finite ine r t i a ,  "does not fee l"  the 
osc i l l a t ing  componen t s  of the fo rce  F ,  the s tabi l i ty  condi t ion is gove rned  by the inequal i ty  0 0 > 0 o r  (for a 
f i l amen t  of length L with ident i f ied ends)  by 

h~2 ~ 2  (~ ~ h i ~ ) ] l n L a  (2.5) 

where  in ~? = 0.577 ... is  the E u l e r  cons tan t .  Condit ion (2.5) does not  c o n t r a d i c t  equ i l ib r ium condit ion (1.4) 
when h R << ha ,  so it does not ru le  out the use of an a l t e rna t ing  c u r r e n t  along with an a l te rna t ing  t r a n s v e r s e  
f ield B R << B a f o r  the equ i l i b r ium conf inemen t  of a to ro ida l  0 -p inch  with high ft. On the o ther  hand, the 
ana logous  condi t ion in the case  of a d i r ec t  c u r r e n t  I = I0, 

ha ~ ( f  -}- hi2) ua / L ,  (2.6) 

makes  this conf inement  method  i m p r a c t i c a l .  

The osc i l l a t ing  componen t s  of the fo rce  F at  a finite f r equency  w s l ight ly  r e l ax  c r i t e r i o n  (2.5) fo r  the 
s tab i l i ty  of the f i l ament  with r e s p e c t  to long-wave leng th  c o r k s c r e w  p e r t u r b a t i o n s ,  but  - an impor t an t  point  - 
they may  cause  p a r a m e t r i c  buildup of c o r k s c r e w  p e r t u r b a t i o n s  at  s h o r t e r  wavelengths .  

To each  pe r iod ic  t e r m  in Eq.  (2.4) the re  c o r r e s p o n d s  a m e c h a n i s m  for  the p a r a m e t r i c  buildup of 
o sc i l l a t i ons .  The f i r s t  t e r m  is due to the fo rce  e x e r t e d  by the ex t e rna l  longitudinal  magne t ic  f ield on the 
f i l ament  with a c u r r e n t  as  it twis ts  into a helix; the second  t e r m  is due to the fo rce  e x e r t e d  on the twis ted  
f i l ament  by the magne t ic  f ie ld  of the c u r r e n t  i t se l f .  If  the a l t e rna t ing  longitudinal  c u r r e n t  is so sma l l  that  
ha << 1, then for  any ka we have [02/01 I < 1/4ha << 1 /4 ,  so that  the second  of these m e c h a n i s m s  for  
p a r a m e t r i c  buildup is much l e s s  e f fec t ive .  To s impl i fy  the d i scuss ion ,  we will subsequent ly  neg lec t  this 
m e c h a n i s m .  Insbead of (2.4), t h e r e f o r e ,  we will d i s cus s  below the s imple  equat ion 

d2~l / d~ ~ -F'(00 -Y 20i cos 2T) ~i = 0 (2.7) 

which is the f a m i l i a r  Mathieu equat ion.  

The condi t ions  for  the s tabi l i ty  of Eqo (2.7) a r e  [8] 

a~(0~)<  0 0 <  b~+~ (01) (n = 0, i ,  2, ...) (2.8) 

where  an (01), bn (01) a re  the e igenva lues  of the Mathieu funct ions ,  tabula ted  in, e .g . ,  [9]. 

The accom pa ny i ng  f igure  shows 00 = at ,  bl ,  a2, b2 c u r v e s  p lo t ted  in the coo rd ina t e s  k a ,  r A for  the 
p a r t i c u l a r  case  hi = 0, h a = 1/4 (a 0 -p inch  with an a l t e rna t ing  longitudinal  c u r r e n t  and fl ~ 1). The same  
c u r v e s  hold qu i t e . a c c u ra t e l y  for  the case  hi = 1, h a = ~ / 4  (a h igh - f r equency  z - p i n c h  with fi << 1) if the 
if the quant i ty  21/2 ka is p lo t ted  along the a b s c i s s a .  The ha tched  r eg ions  a re  those in which p a r a m e t r i c  
exc i ta t ion  of  c o r k s c r e w  p e r t u r b a t i o n s  o c c u r s .  As h a -~0 ,  these r eg ions  move toward  the c u r v e s  2 k a o ~ e l / 2 / n  
(the dashed  c u r v e s  in this f igure) ,  which c o r r e s p o n d  to the condi t ion w = 2%/n  fo r  % - 1/2(0001/2 . Fo r  
n > 2, the exc i ta t ion  r e g i ons  lie below the f i r s t  two r e s o n a n c e  r eg ions  show in this  f igure .  

F o r  a f i l amen t  of finite length L,  the p a r a m e t r i c  exci ta t ion  r eg ions  in t h i s  f igure  s epa ra t e  into s e v e r a l  
v e r t i c a l  s t r i p s  c o r r e s p o n d i n g  to d i s c r e t e  values  of the d i m e n s i o n l e s s  wave number :  

k a  : (2~a / L)]  (j = 1, 2, 3, ...) (2.9) 

It is convenien t  to in t roduce  the modula t ion coef f ic ien t  ~ ~ 201/00 ]. F o r  h i = 0, h a << 1 (a 0 -p inch  
with an a l t e rna t ing  longitudinal  c u r r e n t  and fi ~ 1), we have ~ ~ 2h a / k a  = 2 X / H ,  where  X = 2 v / k  is the p e r -  
tu rba t ion  wave length  and H --- 27ra B e / B a o  is the p i tch  ampli tude of the c o r k s c r e w  magnet ic  fo rce  line at  
the su r f ace  of the equ i l i b r ium f i l amen t s .  F o r  h i = 1, h a << i (a h i g h - f r e q u e n c y  z - p i n c h  with fi << 1), we have 

'~ h a / k a  = X/H. In te res t ing ly ,  the m i n i m u m  modula t ion  coef f ic ien t  in this l a t t e r  ca se  for  a f i l ament  of 
finite length is  emi  n = l / q ,  where  9 = H / L  is the s t a b i l i t y - r e s e r v e  coef f ic ien t  of the z -p inch ,  ca l cu la t ed  f r o m  
the ampl i tude  of the az imutha l  f ield.  
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The pa rame te r  ~ s trongly affects the stability of the sys tem.  As an examination will show, the 
region e > 1, 0 0 > b 1 is occupied p r imar i ly  by paramet r ic -exc i ta t ion  regions ,  while the region e < 1, 0 o > b 1 
is occupied by stability regions .  In the figure,  these regions are beneath the curve 0 0 = bl, to the left and 
r ight ,  respect ively ,  of the vert ical  line ka = 0.5, at which e = 1. 

The modulation coefficient ~ decreases  with increasing working frequency w, as shor ter  and shor ter  
per turbat ion waves are excited. 

It is not difficult to show that we have ~< 1 at any working frequency when condition (2.6) holds. Here, 
however,  the alternating cur ren t  loses its advantage, which it der ives f rom the possibi l i ty of a significant 
relaxation of condition (2.6). 

If e << 1, pa ramet r i c  excitation has a well-defined resonance nature and occurs  when w is equal to or 
near ly  equal to 2w0/n; oscil lations at frequency 1/2wn are excited in the n-th resonance region.  If, on the 
hand, we have ~ ~ 1, the resonance proper t ies  of the instability are  poorly  defined. The osci l lat ions ex-  
ci ted in the sys tem have a broad  frequency spec t rum in this case .  

When ~ << 1, we can find simple analytic express ions  for the quantities charac ter iz ing  the pa ramet r i c  
excitation. For  example,  the relative width A w / 2 w  o of the f i rs t  resonance region and the maximum instabi-  
l i ty increment  y, reached at w = 2w0, are in the case of the 0-pinch 

Ao)/2(o0 ~ 1/2e : h ~  / ka ~ l 

7 =- 1/s so) ~ 1/4 ( h a / k a )  o ) ~  o) 
(2.10) 

As n increases ,  the width of the resonance regions and the instability increment  fall off rapidly,  in p ropo r -  
tion to r [10]. 

For  a rb i t r a ry  ~ and when Eq. (2.5) holds, in the case 00 > 0, a sufficient cr i ter ion for the stability of 
the sys tem is, quite accura te ly ,  00 < 1 - [0~ [. For  a 0-pinch, we find 

co / co A ~ 2ka (t -~ ha / ka) '/2 a J  ~ (2.11) 

In the limiting cases ,  Eq. (2.11) is replaced by 

o ) / a ) A ~ 2 k a ( t  ~ h n / k a )  v' ( ka~- -~) ,  ( o / O ) A ~ 2 ( k a )  v2 ( k a r l )  (2.12) 

The region corresponding to (2.11) is above the curve 00 = b 1 in the accompanying figure. 

It follows f rom the stabili ty diagram and Eqs.  (2.11) and (2.12) that in the case of a thin fi lament 
(21ra/:L << 1),for  which spec t rum (2.9) of dimensionless wave numbers  ka is near ly  continuous and un- 
bounded, pa ramet r i c  buildup of small  co rksc rew per turbat ions  may occur at any working frequency al-  
ternating cu r ren t  for  equil ibrium confinement and stabilization [2-4, 11] of p lasma in a longitudinal mag-  
netic field. It should be kept in mind, however, that this interpretat ion is based on an ex t remely  simplified 
model which does not take into account many factors  which may weaken or even completely eliminate p a r a -  
metr ic  excitation. 

The effects of the various factors  preventing pa ramet r i c  excitation should be displayed f i rs t  at shor t -  
wavelength per turbat ions ,  for which the instabili ty has a small  increment  and is of a c lea r ly  resonance 
nature.  If, on the other hand, there is an upper l imit  on the wave number spect rum of the pa ramet r i ca l ly  
excited per turbat ions ,  one can stabilize a plasma fi lament by selecting a sufficiently high working frequency.  

Let us f i rs t  determine the effect  of friction in the sys tem on the pa ramet r i c  buildup of co rksc rew 
per turbat ions .  When there is friction, the instability regions contrac t  slightly [10]; if the oscil lation damp- 
ing decrement  sat isf ies  5 > y ,  there will be no pa ramet r i c  excitation. 

For  the f i rs t  resonance region with ka>>l in the case of a 0-pinch, we have 

At~ / 2r176 == [1/4 E2 - -  4 ( 6 /  (00)2] ' / '  --- [(h~/ka)  2 - -  (4/ka)(6/0)A)2]"~ 

We can find the upper l imit  on the spec t rum of pa ramet r i ca l ly  e x c i ~ d  co rksc rew perturbat ions:  

(ka) .... ~ 1Z~ ha 2 (tOA / (~)2 
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then,using (2.12), we see that the c r i te r ion  for the fi lament stability is 

(o / 0) A ~ ha ((o A / 8) (2.13) 

It is easy  to see that (2.13) is equivalent to the condition 5 > T.  Since the instability reaches  its 
maximum increment  in the f i r s t  resonance region,  the higher paramet r ic  resonances  will apparently not 
occur  when cr i te r ion  (2.13) is satisfied.  

Yet another factor  which should have a strong effect on the pa ramet r i c  excitation of short-wavelength 
co rksc rew perturbat ions is the nonsteady-s ta te  nature of the actual system.  As a resul t  of the smooth 
time dependence of any sys tem pa rame te r ,  the excitation condition, of an especia l ly  resonant  nature at 

<< 1, will hold only for a time smal le r  than 1 / y  for excitation with a certain wavelength, since the given 
per turbat ion does not manage to build up. Here the excitation energy will be "smeared"  over a certain 
spectra l  range,  never  exceeding the danger point. 

Where neces sa ry ,  this effect can be a r ranged  ar t i f ical iy ,  e.g. ,  by changing the working frequency w 
(as was proposed in [12]). If w" is chosen to sat isfy the conditions 

i / ~<~  I~o/~l ~ i / ~  (2~ 

pa ramet r i c  excitation may be suppressed,  while the advantages associa ted with the use of a high-frequency 
alternating cur ren t  are retained.  Because of (2.10), conditions (2.14) are completely attainable, especial ly  
at the most  c r i t ica l  (in the sense of the choice of working frequency) short-wavelength per turbat ions.  

3. We will now brief ly consider  forced oscil lat ions in the radii  of an annular 0-pinch under the in- 
fluence of al ternating fields. In par t icu lar ,  we will show that if condition (2.11) holds, even for long- 
wavelength per turbat ions ,  the radial  oscil lat ions are stable and of small  amplitude. For  simplici ty,  we 
r e s t r i c t  the discussion to part ia l  osci l lat ions.  As in Section 1, we will assume that hi 2 << 1, ha  2 << 2/I ,  

hR << h a .  

The corresponding equations of motion can be derived through the use of the Routh function given in 
[4]. Oscillations of the small  radius are descr ibed by an inhomogeneous Mathieu equation with the co-  
efficients 

0 0 = / i ( 0 ) A / 0 ) ) 2 ~ 0 ~ ,  01 = (O)AlO))~ha~(4 -- l)12l 

where 7o is the rat io of heat capaci t ies ,  and the r ight  side is equal to 

--  (O)Al(O)2ha2COS2~ (~ =o)t) 

The stabili ty regions of an equation of this type are  the same as regions (2.8) of the corresponding 
homogeneous equation [13]. Since in this case we have 00 > 0 and e = ha 2 (l -4)/4~/0 fl/<< 1, the oscil lat ions 
of the small  radius are stable everywhere ,  except in nar row bands near  the fixed frequencies co = 2w A 
(T0fi)1/2/n, where pa ramet r i c  excitation of oscil lat ions is in principle possible,  but easy  to avoid in 
prac t ice .  

Oscillations of the large radius obey an inhomogeneous Mathieu equation with coefficients 

Oo=201=(o)dlo)2(a iR)2(21lha~--g)  (g=--(RIBno)(OBzolOr)r=R) 

and a r ight  side 

--(co A / co) ~ (a / R) ~ cos 2~ (z = 0)t) 

Since ~ = 1 in this case ,  the conditions 0 < 00 < 1 - 1011 must  hold for stability. Hence, assuming 
that I gl <<2//ha2, and using (1.4), we find 

O)]~ ~ ( 3 ] l )  't~hR (3.1) 

AS is eas i ly  seen, c r i te r ion  (3ol) is much weaker than (2.11), even at ka ~ h R << 1. Interest ingly,  under 
conditions (3.1) and 0 < g << 2//ha 2 the ring is also stable with respec t  to small  vert ical  displacements ,  
descr ibed  by Eq. (2.4) with 00 = 201 = (r 2 (a/R)2g. 

The s teady-s ta te  amplitudes Aa and AR of forced oscil lat ions of the ring radii  can be evaluated by 
neglecting the inst r insic  e las t ic i ty  of the f i lament in the equations of motion. We find 

Aa : Vaha2(OAlCO)2a. AR = (hRlh~) Aa 
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We evident ly  have Aa, AR << a if condition (2o11) holds, even for  ka ~ h a << 1o 

Within the f r a m e w o r k  of this approach,  the re fo re ,  the most  r igorous  r equ i r emen t  on the f requency of 
the a l ternat ing longitudinal c u r r e n t  is condition (2o11), Joe o, that there  be no p a r a m e t r i c  excitat ion of c o r k -  
s c r ew  f i lament  pe r tu rba t ions .  

In conclusion,  the author thanks Mo L. Levin for  i n t e re s t  in this study and valuable advice~ 
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