PARAMETRIC EXCITATION OF CORKSCREW INSTABILITY
OF A §~PINCH BY A HIGH-FREQUENCY LONGITUDINAL
CURRENT

M. G. Nikulin

Equilibrium conditions are given for a thin annular 6 ~pinch with high 8 in a magnetic field,
transverse to the plane of the ring, exciting a high-frequency longitudinal current in the
plasma. The parametric buildup of small corkscrew perturbations is studied on the basis
of the model of a flexible straight plasma filament. Conditions under which parametric
excitation may be suppressed are discussed. There is a brief discussion of forced oscil-
lations of the radii of the annular ¢ -pinch caused by the alternating fields.

When a right circular ¢-pinch twists into a torus, a radial repulsive force arises (see, e.g., [1]) which
prevents the formation of a closed equilibrium configuration. An interesting possibility of balancing this
force and thus achieving an equilibrium toroidal 6-pinch arises when a longitudinal high~frequency current
is excited in the plasma and interacts with the external high-frequency magnetic field transverse to the
plane of the ring. If the intrinsic pressure of the magnetic field produced by the longitudinal current is
much smaller than the plasma pressure, such a discharge may remain of the 8-pinch type. The use of an
alternating rather than a direct longitudinal current has the advantage that it significantly relaxes the limi-
tations imposed on the longitudinal current by the condition for stability of the plagma filament with respect
to long-wavelength corkscrew perturbations [2,3]. At the same time, a high~frequency longitudinal current
may lead to the parametric excitation of a corkscrew instability of the filament at shorter wavelengths [3],
and it may lead to forced oscillations of the radii of the annular filament.

1. We consider a thin annular filament with small radius ¢ and large radius R (¢ « R) formed by an
ideally conducting compressible plasma. A direct azimuthal current flowing along the surface of the
filament governs the jump in the constant longitudinal magnetic field at the plasma—vacuum interface;
there is also a high-frequency longitudinal current

I =1I,cosmt (1.1)
induced by an external high-frequency magnetic field transverse to the plane of the ring.
The conditions for equilibrium of the ring along its small and large radii are [4]

Sﬂ:p + Bi2 = ‘892 + <Ba2> (1.,2)
8np + B2+ {1 +2)(B = B2+ 4(R ja){ BpB,) (1.3)

where p is the gas pressure, B, and B; are the longitudinal magnetic fields outside and inside the filament,
B, =B,y cos ut= 21/ca is the azimuthal magnetic field of current I at the filament surface, B = Br, cos
wt is the high-frequency magnetic field at the circle of radius R transverse to the ring,!= 2In(8R/m ) —4

is the ring inductance per unit length for current I, and the angle brackets denote a time averaging. Strictly
speaking, Egs. (1.2) and (1.3) reflect the fact that oscillations of the small and large ring radii due to the
alternating fields occur about the values @ and R, respectively.
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We restrict the discussion to the case in which this corkscrew
di'scharge is of the g-pinch type with a nearly unit value of g = 8w p/Be2
and we assume that 5.2 ~ 8ap > B.?, (B> . If, moreover, B2 >> 1 (Bs2)
condition (1.3) for equilibrium of the ring along its large radius simpli~-
fies considerably, becoming

hohp=al R (14)

where h, = By, /Be, hp = Bro/Be. It follows from Eq. (1.4) that equili~
brium of a thin ring (/R = 1/100) canbe achieved with hy «< h, <« 1.

In principle, equilibrium confinement of a toroidal §-pinch can
also be acheived through the interaction of an alterunating longitudinal
current with the conducting sheath around the filament. However, the
efficieney is low in this case, since the ratio of the filament radius a to
Fig. 1 the sheath radius b for §-pinch discharges is usually very small:a/b =
1/5.

2, In studying the stability of a plasma filament with respect to corkscrew perturbations, we will
for simplicity neglect the toroidal nature of the problem and consider the effect of a transverse magnetic
field. In a study of the stability of a thin cylindrical plasma conductor carrying a current with respect to
corkscrew perturbations, for which the displacement of the conductor axis is

E = & exp (ikz 4 i8) 2.1)

it is convenient to use the model of a flexible filament, calculating the forces exerted by the magnetic
field on the perturbed conductor and then directly studying the equation of motion of an arbitrary elemeunt
of length of the conductor. This approach is particularly effective in studying the stability of a filament
with a high-frequency alternating current, since it can be used to study parametric excitation of cork-
screw perturbations of the filament. By way of contrast, the method used in [2], involving an averaging
over high-frequency oscillations of the pressure-balance equation for the surface of the perturbed con-
ductor — an approach which then yields a dispersion relation — cannot be used for a study of parametric
excitation,

The applicability conditions for the equation of motion obtained by this method were rigorously de~
rived in [4, 5] for the general case of quasisteady-state high~frequency magnetic fields for a compressible
and ideally conducting plasma filament undergoing smooth (k¢ « 1), overdeveloped (¢ > a), and,as a con-
sequence, long~wavelength (ka <« 1)perturbations: ka « kf « 1., I it is assumed that for the applicability
of this method, as in the case of static fields [6], it is sufficient that only the smoothness condition (k¢ <«
1) be satisfied, short-wavelength perturbations (kg > 1) may also be studied in this manner, but only if
they are underdeveloped (¢ « a), since inequalities k& « 1 € ka must hold. It should be kept in mind, how-
ever, that the magnetohydrodynamic description of a plasma is not valid for short-wavelength perturbations
in many cases of practical interest.

For the problem as outlined, we introduce an equation for small corkscrew oscillations of a plasma
filament carrying longitudinal current (1.1). When there is a perturbation of the form (2.1), the cylindrical
plasma filament is acted upon by a force per unit length [7]

F=1,1B,%— a,(ka) (ka B, + B,)? — o; (ka) (ka)? B;*1 & {2.2)
Here
% (x) = —K, (z) / 2K, (2), a; (z) = Iy (%) / =l (2)

where K, (x) and I; (x) are modified Bessel functions, and the prime denotes differentiation with respect to
the argument.

The equation of motion of an element of the filament length,
na*pfy = F (2.3)

where p is the equilibrium plasma density, is an equation with pericdic coefficients because of the time
dependence adopted for the current I'in (1.1). Using the replacement wt= 27, we can write Eq. (2.3) in the
standard form of a Hill equation [8] with the three terms

B8, / dv* + (0, + 26, cos 2t + 20, cos 41) &, = 0 2.4)
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where
By = 4 {0 ] o) [(ka) (o + a?) - Y, (cte — 1) B
Oy == £4(0, ) 0 kash,, 0 =(0,]0) (g — 1) k2
®, = B,] (4nip)*a, h,=B,]B,

In the limiting case ® — o , in which the plasma filament, having a finite inertia, "does not feel" the
oscillating components of the force F, the stability condition is governed by the inequality 6, > 0 or (for a
filament of length L with identified ends) by

B2 <27 In s (2.5)

where In n = 0.577 ... is the Euler constant. Condition (2.5) does not contradict equilibrium condition (1.4)
when hy <« hg, so it does not rule out the use of an alternating current along with an alternating transverse
field Bg <« B, for the equilibrium confinement of a toroidal 6-pinch with high 8. On the other hand, the
analogous condition in the case of a direct current I= I,

ho<< (1 + 02 na/L, (2.6)
makes this confinement method impractical.

The oscillating components of the force F at a finite frequency w slightly relax criterion (2.5) for the
stability of the filament with respect to long~wavelength corkscrew perturbations, but — an important point —
they may cause parametric buildup of corkscrew perturbations at shorter wavelengths.

To each periodic term in Eq. (2.4) there corresponds a mechanism for the parametric buildup of
oscillations. The first term is due to the force exerted by the external longitudinal magnetic field on the
filament with a current as it twists into a helix; the second term is due to the force exerted on the twisted
filament by the magnetic field of the current itself. If the alternating longitudinal current is so small that
hg « 1, then for any ka we have [6,/6, | < 1/4h, <« 1/4, so that the second of these mechanisms for
parametric buildup is much less effective. To simplify the discussion, we will subsequently neglect this
mechanism, Instead of (2.4), therefore, we will discuss below the simple equation

d?g, / di® 4+ (0, + 28; cos 21) & = 0 (2.7)
which is the familiar Mathieu equation.,
The conditions for the stability of Eq. (2.7) are [8]
a, (0) << 6y < bpiy (6y) (=01, 2, ...} (2.8)
where an (04), bp (04) are the eigenvalues of the Mathieu functions, tabulated in, e.g., [9].

The accompanying figure shows 6, = ay, by, ay, by curves plotted in the coordinates ka , w/wp for the
particular case hj = 0, h, = 1/4 (a 0-pinch with an alternating longitudinal current and g ~ 1). The same
curves hold quite accurately for the case hj = 1, h, = vZ/4 (a high-frequency z-pinch with 8 <« 1) if the
if the quantity 21/2 ka is plotted along the abscissa. The hatched regions are those in which parametric
excitation of corkscrew perturbations occurs. As h, —0, these regions move toward the curves Zkaaei/ 2/n
(the dashed curves in this figure), which correspond to the condition w = 2¢y/n for ¢ = 1/zw901 %, For
n > 2, the excitation regions lie below the first two resonance regions show in this figure.

For a filament of finite length L, the parametric excitation regions in this figure separate into several
vertical strips corresponding to discrete values of the dimensionless wave number:

ke= Q2na /L (=1,2,3,..) (2.9)

It is convenient to introduce the modulation coefficient € = [20;/8, |. For h; =0, hy < 1 (a 6~pinch
with an alternating longitudinal current and 8 ~ 1), we have & = 2hgy/ka = 2A /H, where A =27 /kis the per-
turbation wavelength and H = 27a Be/B,, is the pitch amplitude of the corkscrew magnetic force line at
the surface of the equilibrium filaments. For hj =1, h, « 1 (a high-frequency z~-pinch with 8 « 1), we have
€ my /ka =A/H, Interestingly, the minimum modulation coefficient in this latter case for a filament of
finite length is &,,;, = 1/q, where 9 = H/Lis the stability~-reserve coefficient of the z-pinch, calculated from
the amplitude of the azimuthal field.
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The parameter € strongly affects the stability of the system. As an examination will show, the
region € > 1, 65 > b, is occupied primarily by parametric-excitation regions, while the region €< 1, 8y > by
is occupied by stability regions. In the figure, these regions are beneath the curve 9§, = by, to the left and
right, respectively, of the vertical line kg = 0.5, at which € =1,

The modulation coefficient € decreases with increasing working frequency w, as shorter and shorter
perturbation waves are excited.

It is not difficult to show that we have £< 1 at any working frequency when condition (2.6) holds. Here,
however, the alternating current loses its advantage, which it derives from the possibility of a significant
relaxation of condition (2.6).

K e « 1, parametric excitation has a well-defined resonance nature and occurs when w is equal to or
nearly equal to 2wy/n; oscillations at frequency 1/2wn are excited in the n-th resonance region. If, on the

hand, we have ¢ > 1, the resonance properties of the instability are poorly defined. The oscillations ex~
cited in the system have a broad frequency spectrum in this case,

When € « 1, we can find simple analytic expressions for the quantities characterizing the parametric
excitation, For example, the relative width A w/2w, of the first resonance region and the maximum instabi-
lity increment vy, reached at w = 2w, are in the case of the g~pinch

Aw /29y =Yoe =h, ka1

,],:1/8 £w :1/4 (ha/kd)m<m (2.10)

As n increases, the width of the resonance regions and the instability increment fall off rapidly, in propor-
tion to €1 [107].

For arbitrary ¢ and when Eq. (2.5) holds, in the case 6, > 0, a sufficient criterion for the stability of
the system is, quite accurately, 6, <1— |6, |. For a g-pinch, we find

@/, >2ka(l -+ hy/ ka)"?a," (2.11)
In the limiting cases, Eq. (2.11) is replaced by
0/0,>2ka(l +h/ka)" (ka<€1),  Gro, >2(ka)" (keSS 1) (2.12)
The region corresponding to (2.11) is above the curve 6, = b, in the accompanying figure.

It follows from the stability diagram and Egs. (2.11) and (2.12) that in the case of a thin filament
(21 ¢/L «1),for which spectrum (2.9) of dimensionless wave numberskg is nearly countinuous and un-
bounded, parametric buildup of small corkscrew perturbations may occur at any working frequency al-
ternating current for equilibrium confinement and stabilization [2-4, 11] of plasma in a longitudinal mag~
netic field. It should be kept in mind, however, that this interpretation is based on an extremely simplified
model which does not take into account many factors which may weaken or even completely eliminate para-
metric excitation.

The effects of the various factors preventing parametric excitation should be displayed first at short-
wavelength perturbations, for which the instability has a small increment and is of a clearly resonance
nature, If, on the other hand, there is an upper limit on the wave number spectrum of the parametrically
excited perturbations, one can stabilize a plasma filament by selecting a sufficiently high working frequency.

Let us first determine the effect of friction in the system on the parametric buildup of corkscrew
perturbations. When there is friction, the instability regions contract slightly [10]; if the oscillation damp-
ing decrement satisfies 6 >y, there will be no parametric excitation.

For the first resonance region with ke>1in the case of a §-pinch, we have
Ao /200 = 18 — 4(8/ 00)*]" = [(hy] ka)® — (4] ka) (8/0,71"
We can find the upper limit on the spectrum of parametrically excited corkscrew perturbations:

<ka)max = 1[4 ha2 (U)A / 6)2
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then,using (2.12), we see that the criterion for the filament stability is
o/o, >h(w,]8) (2.13)

It is easy to see that (2.13) is equivalent to the condition 6 >y . Since the instability reaches its
maximum increment in the first resonance region, the higher parametric resonances will apparently not
occur when criterion (2.13) is satisfied.

Yet another factor which should have a strong effect on the parametric excitation of short~wavelength
corkscrew perturbations is the nonsteady-state nature of the actual system. As a result of the smooth
time dependence of any system paramefer, the excitation condition, of an especially resonant nature at
€ « 1, will hold only for a time smaller than 1/y for excitation with a certain wavelength, since the given
perturbation does not manage to build up. Here the excitation energy will be "smeared" over a certain
spectral range, never exceeding the danger point.

Where necessary, this effect can be arranged artifically, e.g., by changing the working frequency w
(as was proposed in [12]). If w is chosen to satisfy the conditions

1lleoLLlo/o|S1 /Y ‘ (2.14)

parametric excitation may be suppressed, while the advantages associated with the use of a high~frequency
alternating current are retained. Because of (2.10), conditions (2.14) are completely attainable, especially
at the most critical (in the sense of the choice of working frequency) short-wavelength perturbations.

3. We will now briefly consider forced oscillations in the radii of an annular 6-pinch under the in-
fluence of alternating fields. In particular, we will show that if condition (2.11) holds, even for long-
wavelength perturbations, the radial oscillations are stable and of small amplitude, For simplicity, we
restrict the discussion to partial oscillations. As in Section 1, we will assume that hj> « 1, hd® « 2/1,
hp < ha.

The corresponding equations of motion can be derived through the use of the Routh function given in
[4]. Oscillations of the small radius are described by an inhomogeneous Mathieu equation with the co~
efficients

B =4 (0, /0218, 0= (0,/0) k24 —1)/2
where v, is the ratio of heat capacities, and the right side is equal to
— (o, ]/ 0)? h?cos 2t (T =wt)

The stability regions of an equation of this type are the same as regions (2.8) of the corresponding
homogeneous equation [13]. Since in this case we have 6; > 0 and € = ha? (I —4Y4y, 8l < 1, the oscillations
of the small radius are stable everywhere, except in narrow bands near the fixed frequencies w = 2w 4

(yoﬁ)l/ /n, where parametric excitation of oscillations is in principle possible, but easy to avoid in
practice,

Oscillations of the large radius obey an inhomogeneous Mathieu equation with coefficients
O =20, = (0, /) (a/ R (2/h? —g) (g =— (R/Bro)(8Bu] 0r),_)
and a right side
—(0, / 0)* (@ / R)* cos 2t (1 = wt)

Since € = 1 in this case, the conditions 0< 0 <1 — |6, ] must hold for stability. Hence, assuming
that | g| «2/tha?, and using (1.4), we find

olo, >3/ kg 3.1)

As is easily seen, criterion (3.1) is much weaker than (2.11), even at kg & hp « 1. Interestingly, under
conditions (3.1) and 0 < g <« 2/th, %, the ring is also stable with respect to small vertical displacements,
described by Eq. (2.4) with 6, = 261 = (wp A)? (a/R)%.

The steady-state amplitudes Ae and AR of forced oscillations of the ring radii can be evaluated by
neglecting the instrinsic elasticity of the filament in the equations of motion. We find

Ao =1h2(0,[0)ka AR = (h,]h)Aa

220



We evidently have Ag, AR « ¢ if condition (2.11) holds, even for kg ~ h, « 1.

Within the framework of this approach, therefore, the most rigorous requirement on the frequency of

the alternating lengitudinal current is condition (2.11), i.e., that there be no parametric excitation of cork-
screw filament perturbations.
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In conclusion, the author thanks M, L., Levin for interest in this study and valuable advice.
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